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Abstract 

Accurate localization of ventricular tachycardia (VT) 

exit sites is essential for effective ablation therapy. 

However, existing pace mapping (PM) techniques lack 

real-time, quantitative feedback, making procedures 

highly operator-dependent. We propose a novel, data-

driven framework for real-time VT exit site localization 

and catheter navigation using standard 12-lead ECG 

signals. By formulating the task as a linear inverse 

problem, we employ a machine learning pipeline that 

estimates spatial displacements based on QRS integral 

features. Four regression models—multivariate, Ridge, 

Lasso, and Elastic Net—were evaluated on data from four 

patients undergoing VT ablation. Sparse regression 

models, particularly Elastic Net without intercept, 

achieved the best performance, yielding a mean 

localization error of 11.5 ± 3.1 mm using only 14 pacing 

sites. The system provides continuous directional 

guidance, iteratively refining predictions and guiding 

catheter movement toward the VT origin. This study 

demonstrates the feasibility of an ECG-based, real-time 

navigation tool and supports its potential integration into 

clinical electrophysiology workflows to enhance 

procedural precision and reduce reliance on operator 

experience. 

 

1. Introduction 

Ventricular tachycardia (VT) is a potentially fatal 

arrhythmia if not treated promptly [1]. Catheter ablation 

has proven effective in certain patients [2], but identifying 

VT exit sites remains a major clinical challenge. Pace 

mapping (PM) is one of the major clinical mapping 

techniques used for VT localization, in which the operator 

compares the morphology of paced QRS complexes with 

the clinical VT morphology on standard ECGs [3]. While 

effective in skilled hands, this approach is inherently 

subjective and heavily dependent on operator experience. 

VT localization is still operator-driven, time-

consuming, and qualitative [4]. Learning to link ECG 

morphologies to anatomy takes years, and the lack of 

quantitative, real-time feedback prolongs procedures and 

lowers success rates, particularly for newer operators [5], 

[6].  

To address these limitations, we present a novel, proof-

of-concept framework that leverages routine 12-lead 

ECG data to localize VT exit sites and guide catheter 

navigation in real time. After each pacing stimulus, the 

proposed framework predicts the three‑dimensional 

displacement to the exit site; the catheter is steered along 

this vector, and the newly reached position becomes the 

next pacing location. The loop repeats until convergence, 

mirroring the clinical PM workflow while adding 

objective, data‑driven guidance.  

We employed multiple regression models with various 

regularization techniques to estimate spatial displacements 

from ECG-derived features—marking an important step 

toward integrating machine learning into clinical 

electrophysiology through real-time guidance that 

enhances efficiency, reduces operator dependency, and 

improves the reproducibility of VT ablation. 

 

2. Methods 

2.1. Study Population, Data Acquisition, 

and Preprocessing 

Four patients undergoing catheter ablation for 

scar‑related VT (≈ 21 pacing sites each) were enrolled 

with informed consent and IRB approval. During 

procedures, intracardiac catheters marked pacing sites, and 

simultaneous 12‑lead ECGs were recorded (0.05–100 Hz, 

1000 Hz, 16‑bit) for 7 s per site. A cloned ECG stream was 

routed to a secure workstation. Three‑dimensional 

electro‑anatomic maps were built; pacing sites with 

Stim‑QRS ≤ 40 ms were retained. For each, the QRS 

complex (120 ms) was integrated across eight independent 

leads (I, II, V1–V6) as in [7], [8]. 

 

2.2 QRS Time-Integral and Spatial 

Displacement Vectors 

For pacing sites 𝑃𝑖  and 𝑃𝑗 , the QRS Time-Integral 

Displacement Vector (QRSIDV) 𝑄𝑖𝑗  was defined as: 
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𝑄𝑖𝑗 =  𝑞𝑗 − 𝑞𝑖 

where 𝑞𝑖 and 𝑞𝑗 are 8-lead QRS integral vectors for 𝑃𝑖  and 

𝑃𝑗  respectively. This captures the change in electrical 

activation between two pacing sites. Corresponding spatial 

displacement vector 𝐷𝑖𝑗  was computed as: 

𝐷𝑖𝑗 =  𝑃𝑗 − 𝑃𝑖  

where 𝑃𝑖  and 𝑃𝑗 are the 3D anatomical coordinates of the 

pacing sites. QRSIDVs serve as predictors; spatial vectors 

are regression targets.  

 

2.3 Linear Inverse Problem Formulation  

The relationship between QRSIDVs and 3D spatial 

displacement vectors was modeled as a linear inverse 

problem, aiming to estimate spatial displacement vectors 

from observed ECG changes, as: 

  𝐷𝑖𝑗 =  𝐴 ⋅  𝑄𝑖𝑗 + 𝜖 

where 𝐴 is the transformation matrix to be estimated, and 

𝜖 accounts for noise and measurement variability. Due to 

the high dimensionality and potential multicollinearity 

among ECG features, this constitutes an ill-posed problem 

that may lack a unique or stable solution. To address this, 

we implemented and compared multiple regularized 

regression techniques—including multivariate linear 

regression, Lasso [9], Ridge [10], and Elastic Net [11]—to 

stabilize the estimation process and enhance model 

generalizability [9].  

 

2.4 Transformation Matrix Calculation  

To estimate the transformation matrix 𝐴, we applied and 

compared several regression techniques, with and without 

intercept terms (denoted as NI for “no intercept”), to 

evaluate the effect of bias: 

1. Multivariate Linear Regression (Ordinary Least 

Squares, OLS): Minimizes the L2-norm of 

residuals. Simple but prone to overfitting with 

high-dimensional predictors. 

2. Lasso Regression (L1 Regularization) [9]: Adds 

an L1 penalty to promote sparsity in 𝐴 , 

effectively performing feature selection by 

identifying the most relevant ECG leads for 

predicting displacement. 

3. Ridge Regression (L2 Regularization) [10]: 

Applies an L2 penalty to reduce multicollinearity 

and overfitting. Retains all features but shrinks 

coefficients. 

4. Elastic Net Regression (combined L1 + L2) [11]: 

Balances the benefits of sparsity and coefficient 

shrinkage. The hybrid method is particularly 

effective when predictors are correlated [11].  

All models were implemented in Python using Scikit-

learn library. Regularization hyperparameters ( 𝜆 ) were 

tuned through five-fold cross-validation [12].  

 

2.5 VT Exit Site Localization Pipeline  

Once the transformation matrix 𝐴 was learned, it was 

used to estimate the VT exit site. Specifically, the QRSIDV 

between a reference pacing site 𝑃1 and the target VT beat 

was computed as 𝑞𝑉𝑇 − 𝑞𝑃1
. The predicted displacement 

vector 𝐷𝑉𝑇−𝑃1
 was then calculated as:  

𝐷𝑉𝑇−𝑃1
=  𝐴 ⋅  (𝑞𝑉𝑇 − 𝑞𝑃1

) 

The predicted VT exit site was then obtained by adding 

this displacement vector to the reference site: 

𝑃𝑉𝑇,𝑒𝑠𝑡 =  𝑃1 + 𝐷𝑉𝑇−𝑃1
 

Predictions were mapped onto the nearest surface node via 

Trimesh library [13] to ensure anatomical consistency and 

enable visualization within the clinical mapping 

environment. 

 

2.6 Directional Feedback for Navigation  

To enable real-time catheter guidance, the predicted 

displacement vector was iteratively updated using 

QRSIDV’s from newly added pacing sites. Unit vector 

𝐷𝑉𝑇−𝑃1
 provided directional guidance for catheter 

movement, while its magnitude |𝐷𝑉𝑇−𝑃1
|  served as an 

estimate of distance to VT exit site. This allowed for 

progressive refinement of localization and navigation 

throughout the ablation procedure.  

 

2.7 Simulated Prospective Analysis & 

Metrics 

To evaluate clinical feasibility, we conducted a 

simulated prospective analysis on a representative patient 

set. The goal was to assess how different regression 

techniques would affect localization performance.  

The simulation began with initial training set of four 

randomly selected pacing sites (max inter-site distance ≤ 

30 mm) mimicking typical clinical practice where 

operators begin pacing in a localized region based on initial 

clinical assessment. K-nearest neighbors (KNN) strategy 

(k=1, Euclidean distance) was used to iteratively expand 

the training set and update transformation matrix A, 

progressively exploring broader VT-relevant regions. The 

following procedure was repeated until 14 available pacing 

sites were incorporated: 

1. Predict VT exit site using the current training set. 

2. Identify the nearest available pacing site to the 

predicted location. 

3. Add the selected site to the training set. 

4. Recalculate the transformation matrix A. 

At each iteration, model predictions were stored for later 

evaluation of localization performance.  

Localization accuracy was measured as Euclidean 

distance between predicted and actual VT exit sites. For 
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each training set configuration, mean localization error and 

standard deviation were computed as the average and 

standard deviation of patient-level means, respectively, to 

account for inter-patient variability. 

 

3. Results  

3.1 Localization Accuracy with Different 

Regression Methods 

Across all pacing-site configurations, sparse models 

(Lasso, Elastic Net) outperformed multivariate and Ridge 

regression (Fig. 1). With four pacing sites, errors were 

similar (13.6-14.1 mm). However, as additional pacing 

sites were incorporated, sparse models improved most: 

Elastic Net (NI) reached 11.5 ± 3.1 mm at 14 pacing sites, 

Lasso (NI) 12.3 ± 3.7 mm. Convergence around 11-12 

pacing sites suggests the transformation matrix A achieved 

adequate rank for reliable spatial mapping. Ridge remained 

higher at 15.2 ± 5.9 mm, while multivariate regression had 

the largest final errors (14.7 ± 5.3 mm with intercept, 15.2 

± 5.9 mm NI). NI slightly benefited sparse models but 

mildly worsened multivariate regression, indicating 

overfitting in high-dimensional space. NI made no 

difference for Ridge. These differences are visualized in 

Figure 1, which compares the mean localization accuracy 

for all models with and without intercept.  

 

3.2 Effect of Training Set Size on 

Localization Accuracy  

Adding pacing sites reduced error, especially for sparse 

models. Starting with four pacing sites (max inter-site 

distance ≤ 30 mm), KNN-guided inclusion lowered Elastic 

Net (NI) error from 13.6 ± 4.2 mm (4 sites) to 11.5 ± 3.1 

mm (14 sites); Lasso (NI) error dropped from 13.6 ± 4.2 

mm to 12.3 ± 3.7 mm over the same range. Improvements  

plateaued after 12-14 sites. Ridge changed little with added 

data, mirroring its overall stability but lower accuracy.  

 

4. Discussion  

This study presents a novel methodology for real-time 

localization of ventricular tachycardia (VT) exit sites from 

standard 12-lead ECGs. Framing the task as a linear 

inverse problem to solve with sparse regression yields 

quantitative, directional feedback for automated catheter 

navigation, reducing reliance on operator experience.  

 

4.1 Comparative Analysis of Regression 

Techniques  

Figure 1. (A) Mean localization error (mm) for each regression method as pacing sites increase (4 to 14) under standard and 

no-intercept (NI) conditions. (B) Mean localization error ± SD (mm), by method and pacing site count, with best method’s 

final iteration highlighted. (C) Flowchart of the iterative computational and prospective clinical workflow. 

Figure 2. A representative case. (A) Left ventricle 

rendering of the iterative procedure where directional 

feedback guides catheter navigation to VT exit. (B) Left 

lateral wall view of directional feedback. 

 

Page 3



Sparse models—Lasso and Elastic Net—consistently 

gave the lowest localization error by selecting informative 

leads and time windows while limiting overfitting. Ridge 

remained stable but lacked this selectivity, and 

unregularized multivariate regression overfit as training 

size grew. These findings align with prior literature on 

ECG imaging [14]. Though error drop from 4 to 14 pacing 

sites is modest, the method enables automated, directional 

guidance that may reduce unnecessary pacing. A small but 

consistent error increase from 4 to 5 sites occurs likely due 

to initial sites being selected at random. Results converged 

as more pacing sites were added after 12 to 14. This is 

likely due to limitations of available data but may also 

suggest that additional pacing sites beyond this threshold 

provide diminishing returns in accuracy improvement.  

 

4.2 Clinical Relevance and Integration  

The achieved localization accuracy—11.5 ± 3.1 mm 

using Elastic Net (NI)—demonstrates this method’s 

feasibility for guiding catheter movement during pace 

mapping. KNN‑based iterative updates mirror clinical 

practice: each prediction directs the next pacing site, 

enabling on‑the‑fly refinement until converging on a single 

location. Because the algorithm runs using a data-driven 

approach with standard ECGs and existing 3‑D mapping 

systems—direction vectors are simply projected onto the 

cardiac mesh—requires no extra hardware and is 

accessible across centers and operator experience levels. 

Future work could explore advanced site selection 

strategies, such as Bayesian optimization or active 

learning, but real-time computational constraints must be 

balanced against potential accuracy gains. 

 

5. Limitations and Conclusions  

The study used a small dataset of four patients—

adequate for proof-of-concept but insufficient for broad 

VT generalizability. Future studies should incorporate 

larger, more diverse cohorts to confirm robustness and 

clinical value. The in-silico design may bias performance: 

during iterative KNN updates some predicted pacing sites 

overlapped the training set, potentially inflating accuracy. 

The method assumes consistent 12-lead ECG electrode 

placement, which may vary in clinical settings and differ 

by patient sex due to anatomical variation. While our small 

cohort was insufficient to assess sex-specific effects, 

larger, more diverse datasets could enable adjustment 

strategies that further improve robustness. A prospective 

implementation—where predictions guide acquisition of 

new, previously unvisited pacing sites—would better 

reflect real-word clinical usage and offer a stricter test.  

This work demonstrates the feasibility of using sparse 

regression models and ECG-derived features for real-time 

VT localization and catheter navigation with clinically 

meaningful accuracy, continuous feedback, and an update 

loop mirroring catheter‑lab practice. If validated in larger 

prospective studies, the method could streamline VT 

ablation by improving speed, precision, and accessibility. 
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