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Abstract

Accurate localization of ventricular tachycardia (VT)
exit sites is essential for effective ablation therapy.
However, existing pace mapping (PM) techniques lack
real-time, quantitative feedback, making procedures
highly operator-dependent. We propose a novel, data-
driven framework for real-time VT exit site localization
and catheter navigation using standard 12-lead ECG
signals. By formulating the task as a linear inverse
problem, we employ a machine learning pipeline that
estimates spatial displacements based on QRS integral
features. Four regression models—multivariate, Ridge,
Lasso, and Elastic Net—were evaluated on data from four
patients undergoing VT ablation. Sparse regression
models, particularly FElastic Net without intercept,
achieved the best performance, yielding a mean
localization error of 11.5 £ 3.1 mm using only 14 pacing
sites. The system provides continuous directional
guidance, iteratively refining predictions and guiding
catheter movement toward the VT origin. This study
demonstrates the feasibility of an ECG-based, real-time
navigation tool and supports its potential integration into
clinical  electrophysiology — workflows to enhance
procedural precision and reduce reliance on operator
experience.

1. Introduction

Ventricular tachycardia (VT) is a potentially fatal
arrhythmia if not treated promptly [1]. Catheter ablation
has proven effective in certain patients [2], but identifying
VT exit sites remains a major clinical challenge. Pace
mapping (PM) is one of the major clinical mapping
techniques used for VT localization, in which the operator
compares the morphology of paced QRS complexes with
the clinical VT morphology on standard ECGs [3]. While
effective in skilled hands, this approach is inherently
subjective and heavily dependent on operator experience.

VT localization is still operator-driven, time-
consuming, and qualitative [4]. Learning to link ECG
morphologies to anatomy takes years, and the lack of
quantitative, real-time feedback prolongs procedures and
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lowers success rates, particularly for newer operators [5],
[6].

To address these limitations, we present a novel, proof-
of-concept framework that leverages routine 12-lead
ECG data to localize VT exit sites and guide catheter
navigation in real time. After each pacing stimulus, the
proposed framework predicts the three-dimensional
displacement to the exit site; the catheter is steered along
this vector, and the newly reached position becomes the
next pacing location. The loop repeats until convergence,
mirroring the clinical PM workflow while adding
objective, data-driven guidance.

We employed multiple regression models with various
regularization techniques to estimate spatial displacements
from ECG-derived features—marking an important step
toward integrating machine learning into clinical
electrophysiology through real-time guidance that
enhances efficiency, reduces operator dependency, and
improves the reproducibility of VT ablation.

2. Methods

2.1. Study Population, Data Acquisition,
and Preprocessing

Four patients undergoing catheter ablation for
scar-related VT (= 21 pacing sites each) were enrolled
with informed consent and IRB approval. During
procedures, intracardiac catheters marked pacing sites, and
simultaneous 12-lead ECGs were recorded (0.05-100 Hz,
1000 Hz, 16-bit) for 7 s per site. A cloned ECG stream was
routed to a secure workstation. Three-dimensional
electro-anatomic maps were built; pacing sites with
Stim-QRS <40 ms were retained. For each, the QRS
complex (120 ms) was integrated across eight independent
leads (I, I, V1-V6) as in [7], [8].

2.2 QRS Time-Integral
Displacement Vectors

and Spatial

For pacing sites P; and P;, the QRS Time-Integral
Displacement Vector (QRSIDV) Q;; was defined as:
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Qij=4q;— q
where g; and q; are 8-lead QRS integral vectors for P; and
P; respectively. This captures the change in electrical
activation between two pacing sites. Corresponding spatial
displacement vector D;; was computed as:

Dij = P] - Pi
where P; and P; are the 3D anatomical coordinates of the
pacing sites. QRSIDVs serve as predictors; spatial vectors
are regression targets.

2.3 Linear Inverse Problem Formulation

The relationship between QRSIDVs and 3D spatial
displacement vectors was modeled as a linear inverse
problem, aiming to estimate spatial displacement vectors
from observed ECG changes, as:

Dijj=A-Q;+e

where A is the transformation matrix to be estimated, and
€ accounts for noise and measurement variability. Due to
the high dimensionality and potential multicollinearity
among ECG features, this constitutes an ill-posed problem
that may lack a unique or stable solution. To address this,
we implemented and compared multiple regularized
regression techniques—including multivariate linear
regression, Lasso [9], Ridge [10], and Elastic Net [11]—to
stabilize the estimation process and enhance model
generalizability [9].

2.4 Transformation Matrix Calculation

To estimate the transformation matrix A, we applied and
compared several regression techniques, with and without
intercept terms (denoted as NI for “no intercept”), to
evaluate the effect of bias:

1. Multivariate Linear Regression (Ordinary Least
Squares, OLS): Minimizes the L2-norm of
residuals. Simple but prone to overfitting with
high-dimensional predictors.

2. Lasso Regression (L1 Regularization) [9]: Adds
an L1 penalty to promote sparsity in A ,
effectively performing feature selection by
identifying the most relevant ECG leads for
predicting displacement.

3. Ridge Regression (L2 Regularization) [10]:
Applies an L2 penalty to reduce multicollinearity
and overfitting. Retains all features but shrinks
coefficients.

4. Elastic Net Regression (combined L1 + L2) [11]:
Balances the benefits of sparsity and coefficient
shrinkage. The hybrid method is particularly
effective when predictors are correlated [11].

All models were implemented in Python using Scikit-
learn library. Regularization hyperparameters (1) were
tuned through five-fold cross-validation [12].

2.5 VT Exit Site Localization Pipeline

Once the transformation matrix A was learned, it was
used to estimate the VT exit site. Specifically, the QRSIDV
between a reference pacing site P; and the target VT beat
was computed as qyr — gp,. The predicted displacement
vector Dyr_p, was then calculated as:

Dyr_p, = A" (qvr — qu)

The predicted VT exit site was then obtained by adding

this displacement vector to the reference site:

Pyrest = P1 + DVT—P1
Predictions were mapped onto the nearest surface node via
Trimesh library [13] to ensure anatomical consistency and
enable visualization within the clinical mapping
environment.

2.6  Directional Feedback for Navigation

To enable real-time catheter guidance, the predicted
displacement vector was iteratively updated using
QRSIDV’s from newly added pacing sites. Unit vector
Dyr_p, provided directional guidance for catheter
movement, while its magnitude |DVT_p1| served as an
estimate of distance to VT exit site. This allowed for

progressive refinement of localization and navigation
throughout the ablation procedure.

2.7 Simulated Prospective
Metrics

Analysis &

To evaluate clinical feasibility, we conducted a
simulated prospective analysis on a representative patient
set. The goal was to assess how different regression
techniques would affect localization performance.

The simulation began with initial training set of four
randomly selected pacing sites (max inter-site distance <
30 mm) mimicking typical clinical practice where
operators begin pacing in a localized region based on initial
clinical assessment. K-nearest neighbors (KNN) strategy
(k=1, Euclidean distance) was used to iteratively expand
the training set and update transformation matrix 4,
progressively exploring broader VT-relevant regions. The
following procedure was repeated until 14 available pacing
sites were incorporated:

1. Predict VT exit site using the current training set.

2. Identify the nearest available pacing site to the
predicted location.

3. Add the selected site to the training set.

4. Recalculate the transformation matrix 4.

At each iteration, model predictions were stored for later
evaluation of localization performance.

Localization accuracy was measured as Euclidean
distance between predicted and actual VT exit sites. For
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Figure 1. (A) Mean localization error (mm) for each regression method as pacing sites increase (4 to 14) under standard and
no-intercept (NI) conditions. (B) Mean localization error + SD (mm), by method and pacing site count, with best method’s
final iteration highlighted. (C) Flowchart of the iterative computational and prospective clinical workflow.

each training set configuration, mean localization error and
standard deviation were computed as the average and
standard deviation of patient-level means, respectively, to
account for inter-patient variability.

3. Results

3.1 Localization Accuracy with Different
Regression Methods

Across all pacing-site configurations, sparse models
(Lasso, Elastic Net) outperformed multivariate and Ridge
regression (Fig. 1). With four pacing sites, errors were
similar (13.6-14.1 mm). However, as additional pacing
sites were incorporated, sparse models improved most:
Elastic Net (NI) reached 11.5 £+ 3.1 mm at 14 pacing sites,
Lasso (NI) 12.3 £ 3.7 mm. Convergence around 11-12
pacing sites suggests the transformation matrix 4 achieved
adequate rank for reliable spatial mapping. Ridge remained
higher at 15.2 + 5.9 mm, while multivariate regression had
the largest final errors (14.7 + 5.3 mm with intercept, 15.2
+ 5.9 mm NI). NI slightly benefited sparse models but
mildly worsened multivariate regression, indicating
overfitting in high-dimensional space. NI made no
difference for Ridge. These differences are visualized in
Figure 1, which compares the mean localization accuracy
for all models with and without intercept.

3.2 Effect of Training Set Size on

Localization Accuracy

Adding pacing sites reduced error, especially for sparse
models. Starting with four pacing sites (max inter-site
distance < 30 mm), KNN-guided inclusion lowered Elastic
Net (NI) error from 13.6 + 4.2 mm (4 sites) to 11.5 = 3.1
mm (14 sites); Lasso (NI) error dropped from 13.6 + 4.2
mm to 12.3 + 3.7 mm over the same range. Improvements
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Figure 2. A representative case. (A) Left ventricle
rendering of the iterative procedure where directional
feedback guides catheter navigation to VT exit. (B) Left
lateral wall view of directional feedback.

plateaued after 12-14 sites. Ridge changed little with added
data, mirroring its overall stability but lower accuracy.

4. Discussion

This study presents a novel methodology for real-time
localization of ventricular tachycardia (VT) exit sites from
standard 12-lead ECGs. Framing the task as a linear
inverse problem to solve with sparse regression yields
quantitative, directional feedback for automated catheter
navigation, reducing reliance on operator experience.

4.1 Comparative Analysis of Regression
Techniques
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Sparse models—Lasso and Elastic Net—consistently
gave the lowest localization error by selecting informative
leads and time windows while limiting overfitting. Ridge
remained stable but lacked this selectivity, and
unregularized multivariate regression overfit as training
size grew. These findings align with prior literature on
ECG imaging [14]. Though error drop from 4 to 14 pacing
sites is modest, the method enables automated, directional
guidance that may reduce unnecessary pacing. A small but
consistent error increase from 4 to 5 sites occurs likely due
to initial sites being selected at random. Results converged
as more pacing sites were added after 12 to 14. This is
likely due to limitations of available data but may also
suggest that additional pacing sites beyond this threshold
provide diminishing returns in accuracy improvement.

4.2 Clinical Relevance and Integration

The achieved localization accuracy—11.5 £ 3.1 mm
using Elastic Net (NI)—demonstrates this method’s
feasibility for guiding catheter movement during pace
mapping. KNN-based iterative updates mirror clinical
practice: each prediction directs the next pacing site,
enabling on-the-fly refinement until converging on a single
location. Because the algorithm runs using a data-driven
approach with standard ECGs and existing 3-D mapping
systems—direction vectors are simply projected onto the
cardiac mesh—requires no extra hardware and is
accessible across centers and operator experience levels.
Future work could explore advanced site selection
strategies, such as Bayesian optimization or active
learning, but real-time computational constraints must be
balanced against potential accuracy gains.

5. Limitations and Conclusions

The study used a small dataset of four patients—
adequate for proof-of-concept but insufficient for broad
VT generalizability. Future studies should incorporate
larger, more diverse cohorts to confirm robustness and
clinical value. The in-silico design may bias performance:
during iterative KNN updates some predicted pacing sites
overlapped the training set, potentially inflating accuracy.
The method assumes consistent 12-lead ECG electrode
placement, which may vary in clinical settings and differ
by patient sex due to anatomical variation. While our small
cohort was insufficient to assess sex-specific effects,
larger, more diverse datasets could enable adjustment
strategies that further improve robustness. A prospective
implementation—where predictions guide acquisition of
new, previously unvisited pacing sites—would better
reflect real-word clinical usage and offer a stricter test.

This work demonstrates the feasibility of using sparse
regression models and ECG-derived features for real-time
VT localization and catheter navigation with clinically

meaningful accuracy, continuous feedback, and an update
loop mirroring catheter-lab practice. If validated in larger
prospective studies, the method could streamline VT
ablation by improving speed, precision, and accessibility.
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